Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The evolution of protoplanetary disks in regions with massive OB stars is influenced by externally driven winds that deplete the outer parts of these disks. The winds have previously been studied via forbidden oxygen emission lines, which also arise in isolated disks in low-mass star-forming regions (SFRs) with weak external UV fields in photoevaporative or magnetic (internal) disk winds. It is crucial to determine how to disentangle external winds from internal ones. Here, we report a proxy for unambiguously identifying externally driven winds with a forbidden line of neutral atomic carbon, [CI] 8727 Å. We compare for the first time the spatial location of the emission in the [OI] 5577 Å, [OI] 6300 Å, and [CI] 8727 Å lines traced by VLT/MUSE-NFM with the ALMA Band 7 continuum disk emission in a sample of 12 proplyds in the Orion Nebula Cluster (ONC). We confirm that the [OI] 5577 Å emission is co-spatial with the disk emission, whereas that of [OI] 6300 Å is emitted both on the disk surface and on the ionization front of the proplyds. We show for the first time that the [CI] 8727 Å line is also co-spatial with the disk surface in proplyds, as seen in the MUSE and ALMA data comparison. The peak emission is compatible with the stellar location in all cases, apart from one target with high relative inclination with respect to the ionizing radiation, where the peak emission is located at the disk edge in the direction of the ionizing radiation. To verify whether the [CI] 8727 Å line is detected in regions where external photoevaporation is not expected, we examined VLT/X-Shooter spectra for young stars in low-mass SFRs. Although the [OI] 5577 Å and 6300 Å lines are well detected in all these targets, the total detection rate is ≪10% in the case of the [CI] 8727 Å line. This number increases substantially to a ∼40% detection rate inσ-Orionis, a region with higher UV radiation than in low-mass SFRs, but lower than in the ONC. The spatial location of the [CI] 8727 Å line emission and the lack of its detection in isolated disks in low-mass SFRs strongly suggest that this line is a tell-tale tracer of externally driven photoevaporative winds, which agrees with recent excitation models.more » « less
-
Shu-ichiro Inutsuka; Yuri Aikawa; Takayuki Muto; Kengo Tomida; Motohide Tamura (Ed.)Since Protostars and Planets VI (PPVI), our knowledge of the global properties of protoplanetary and debris disks, as well as of young stars, has dramatically improved. At the time of PPVI, mm-observations and optical to near-infrared spectroscopic surveys were largely limited to the Taurus star-forming region, especially of its most massive disk and stellar population. Now, near-complete surveys of multiple star-forming regions cover both spectroscopy of young stars and mm interferometry of their protoplanetary disks. This provides an unprecedented statistical sample of stellar masses and mass accretion rates, as well as disk masses and radii, for almost 1000 young stellar objects within 300 pc from us, while also sampling different evolutionary stages, ages, and environments. At the same time, surveys of debris disks are revealing the bulk properties of this class of more evolved objects. This chapter reviews the statistics of these measured global star and disk properties and discusses their constraints on theoretical models describing global disk evolution. Our comparisons of observations to theoretical model predictions extends beyond the traditional viscous evolution framework to include analytical descriptions of magnetic wind effects. Finally, we discuss how recent observational results can provide a framework for models of planet population synthesis and planet formation.more » « less
-
We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines.more » « less
-
ABSTRACT Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (<1 au) dust lifted slightly out of the mid-plane to partially occult the star. The identification of a face-on dipper disc and growing evidence of inner disc misalignments brings this scenario into question. Thus, we uniformly (re)derive the inclinations of 24 dipper discs resolved with (sub-)mm interferometry from ALMA. We find that dipper disc inclinations are consistent with an isotropic distribution over id ≈ 0−75°, above which the occurrence rate declines (likely an observational selection effect due to optically thick disc mid-planes blocking their host stars). These findings indicate that the dipper phenomenon is unrelated to the outer (>10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions.more » « less
An official website of the United States government

Full Text Available